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Outline: 

• Why use model selection 

• AIC 

• AIC weights and model averaging 

• Other methods 

 

 



Data-Based Model Selection 

 Problem 

– Multiple plausible models and a single data set 

– How does one select the most reasonable and 

useful model 

 Guiding Principle: “Principle of Parsimony” 

– General trade-off between model fit and 

estimator precision 
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Y= β0 + β1 x + β2 x2  
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Approaches to Model Selection: 

Sequential Hypothesis Testing 
 For “nested” models  

 Begin with most general model and test against 
the next most general model, etc., down to the 
simplest model 

 Test less general models (H0) against more general 
models (Ha) using, e.g., LRT 

 If test is “significant”, then the extra parameters of 
Ha are deemed necessary to explain the data 

 If test is not “significant”, then select the less 
general model, as it will yield smaller variances 
(fewer parameters); Principle of Parsimony  



Akaike’s Information Criterion, 

AIC 

 

 

 

KyLAIC 2)]|ˆ(log[2  

)|ˆ( yL  =likelihood function evaluated  

at MLEs of  given the data, y 

K = number of model parameters 

Akaike (1973), Burnham and Anderson  

 (1998, 2002) 



Quasilikelihood Adjustment for 

Lack of Fit 

 When most general model in model set does 

not fit data, quasilikelihood procedures are 

used to adjust tests and model selection 

metrics for lack of fit caused by 

overdispersion 

 Quasilikelihood variance inflation factor: 
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Quasilikelihood Adjusted AIC, 

QAIC 

 

 

 

 

 

  Favor simpler models 
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AIC Adjusted for Overdispersion 

and Small Sample Size 
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K = number of parameters 

n = sample size (e.g., number of releases in  

CR modeling) 



AIC Weights 

 wi = AIC weights ~ weight of evidence in 

favor of model i being most appropriate, 

given the data and the model set (R models) 

     = AICi – AICmin = difference between 

AIC for model i and lowest AIC 
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Model Averaging: 

Incorporating Model Uncertainty  

            

 

 

 

 

  = parameter estimate from model i 

   = model-specific sampling var 
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)|ˆr(âv ii M





R

i

iiw
1

ˆˆ 









 



R

i

iiii Mw
1

2)ˆˆ()|ˆr(âv)ˆr(âv 



 

Cooch and White (2015) 



Other model selection criterion 

 Other model selection criterion: BIC 

 See Cooch and White (2015) ; Link and 

Barker (2010) 

 Active area of research 



Take home points 

 trade-off between model fit and estimator 

precision 

   

 Adjustment for sample size & overdispersion 

 AIC weight 

 Model Averaging 
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